Category Archives: Bolts

Bolt axial force vs torque

Bolt axial force vs torque

The torque required to tighten the bolt:

T=Kcdot Fcdot d

Where:

T:            Torque (N.m)

K:            Torque coefficient

F:            Axial preload force (N)

d:            Nominal bolt diameter (mm)

The torque coefficient:

K=0.5cdot left ( frac{lcdot cosalpha +pi cdot dcdot mu }{pi cdot dcdot cosalpha -lcdot mu } right )+0.625 cdot mu _{c}

Where:

l:             Lead (mm)

α:           Half angle of the screw thread (°)

d:            Nominal bolt diameter (mm)

µ:            Thread friction coefficient

µc:          Collar friction coefficient

Common torque coefficient values for µ=µc=0.15:

Bolt condition    K
Non plated black finish steel bolts 0.3
Mild steel bolts 0.2
Zinc plated steel bolts 0.2
Lubricated steel bolts 0.18
Cadmium plated steel bolts 0.16
With bowman anti-seize 0.12
With bowman-grip nuts 0.09

 

It is estimated that roughly 90% of the input energy is lost in overcoming the mating friction under the head (collar) and between the thread or nut and its mating threads.  Consequently only the remaining 10% of input energy is turned into bolt stretch.

www.caetool.com

Bolt tensile strength

Bolt tensile strength

DIN EN ISO 898-1 (2009-09)

DIN EN ISO 3506-1 (2010-03)

DIN EN ISO 898-1 (2009-09)
DIN EN ISO 3506-1 (2010-03)

The strength of standard ISO metric steel bolts is readily identified by means of a numerical code.

The code is comprised of two numbers separated by a dot. This dot is not a decimal marker but is merely a means of separating the two parts of the code. The number to the left of the dot when multiplied by 100 provides an indication of the Ultimate Tensile Strength (in MPa) while the number to the right when multiplied by 10 times the preceeding number gives the Yield Strength (in MPa)

Example: 8.8
Tensile Strength
8 x100 = 800MPa

Yield Strength
8 x 8 x 10 = 640 MPa

www.caetool.com